jueves, 13 de mayo de 2010

Problema del Movimiento Armónico Simple

El famoso M.A.S (Movimiento Armónico Simple) Vamos a resolver un problemita de los que me gustan para poder entenderlo mejor.

De esta imagen intentaré sacar el problema;

Vamos a suponer que el resorte que se mira ahí tiene una Constante elástica de 80 N/m y que el cuerpo que oscila, sujeto a su extremo, tiene masa m = 200 gramos "gr" .

a) ¿Cuál es la velocidad angular del movimiento circular uniforme, cuya proyección coincide con el movimiento oscilatorio del cuerpo de masa "m" ?

b) ¿Cuál es el Periodo del M.A.S?

Vamos a resolver el inciso (A)

Debes aprender que la proyección de un movimiento circular uniforme sobre un diámetro de la circunferencia realiza un M.A.S

ω² = K/m ---> Esta es la fórmula de la velocidad angular en el M.A.S

ω = √ K/m ---> Sacamos raiz ambos miembros.

Ahora reemplazamos nuestros datos en esta fórmula.

ω =
√80 N/m / 0.20 Kg = √400 = 20 Rad / s (Respuesta)

__________________________________________________________________

Vamos a resolver el inciso (B)

Para ello usamos la fórmula del Periodo.

T = 2
π/ω ---> Reemplazemos nuestros datos en fórmula.

T = 2 (3.1416) / 20 = 0.314 segundos (Respuesta)

Eso es todo, pronto edito y le aumento a este problema más cosas.




No hay comentarios.:

Publicar un comentario